Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation.

نویسندگان

  • George Thom
  • Nicola Minshall
  • Anna Git
  • Joanna Argasinska
  • Nancy Standart
چکیده

Cytoplasmic polyadenylation-element-binding protein (CPEB) is a well-characterized and important regulator of translation of maternal mRNA in early development in organisms ranging from worms, flies and clams to frogs and mice. Previous studies provided evidence that clam and Xenopus CPEB are hyperphosphorylated at germinal vesicle breakdown (GVBD) by cdc2 kinase, and degraded shortly after. To examine the conserved features of CPEB that mediate its modification during meiotic maturation, we microinjected mRNA encoding wild-type and mutated clam CPEB into Xenopus oocytes that were subsequently allowed to mature with progesterone. We observed that (i) ectopically expressed clam CPEB is phosphorylated at GVBD and subsequently degraded, mirroring the fate of the endogenous Xenopus CPEB protein, (ii) mutation of nine Ser/Thr Pro-directed kinase sites prevents phosphorylation and degradation and (iii) deletion of the PEST box, and to a lesser extent of the putative cyclin destruction box, generates a stable and phosphorylated version of CPEB. We conclude that phosphorylation of both consensus and non-consensus sites by cdc2 kinase targets clam CPEB for PEST-mediated destruction. We also show that phosphorylation of CPEB mediates its dissociation from ribonucleoprotein complexes, prior to degradation. Our findings reinforce results obtained in Xenopus, and have implications for CPEB from other invertebrates including Drosophila, Caenorhabditis elegans and Aplysia, which lack PEST boxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of degradation of CPEB during Xenopus oocyte maturation.

CPEB, a cytoplasmic polyadenylation element-binding protein, plays an important role in translational control of maternal mRNAs in early animal development. During Xenopus oocyte maturation, CPEB undergoes a Cdc2-mediated phosphorylation- and ubiquitin-dependent degradation that is required for proper entry into meiosis II. However, the precise mechanism of CPEB degradation, including the ident...

متن کامل

Correction for Nechama et al., "An Unusual Two-Step Control of CPEB Destruction by Pin1".

Cytoplasmic polyadenylation is a conserved mechanism that controls mRNA translation and stability. A key protein that promotes polyadenylation-induced translation of mRNAs in maturing Xenopus oocytes is the cytoplasmic polyadenylation element binding protein (CPEB). During this meiotic transition, CPEB is subjected to phosphorylation-dependent ubiquitination and partial destruction, which is ne...

متن کامل

Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II.

Phosphorylation of cytoplasmic polyadenylation element binding protein (CPEB) regulates protein synthesis in hippocampal dendrites. CPEB binds the 3' untranslated region (UTR) of cytoplasmic mRNAs and, when phosphorylated, initiates mRNA polyadenylation and translation. We report that, of the protein kinases activated in the hippocampus during synaptic plasticity, calcium/calmodulin-dependent p...

متن کامل

Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger.

CPEB is an RNA binding protein that interacts with the maturation-type cytoplasmic polyadenylation element (CPE) (consensus UUUUUAU) to promote polyadenylation and translational activation of maternal mRNAs in Xenopus laevis. CPEB, which is conserved from mammals to invertebrates, is composed of three regions: an amino-terminal portion with no obvious functional motif, two RNA recognition motif...

متن کامل

CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes.

In both vertebrates and invertebrates, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. In Xenopus oocytes, where most of the biochemical details of this process have been examined, polyadenylation is controlled by CPEB, a sequence-specific RNA binding protein. The activity of CPEB, which is to recruit cleavage and polyadenylation specificity factor (CPSF) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 370 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003